Algorithmic Derivation of Nilpotent Centers

نویسنده

  • JAUME GINÉ
چکیده

To characterize when a nilpotent singular point of an analytic differential system is a center is of particular interest, first for the problem of distinguishing between a focus and a center, and after for studying the bifurcation of limit cycles from it or from its period annulus. We give an effective algorithm in the search of necessary conditions for detecting nilpotent centers based in recent developments. Moreover we survey the last results on this problem and illustrate our approach by means of examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Rank Two Locally Nilpotent Derivations in Dimension Three

In this paper we give an algorithmic characterization of rank two locally nilpotent derivations in dimension three. Together with an algorithm for computing the plinth ideal, this gives a method for computing the rank of a locally nilpotent derivation in dimension three.

متن کامل

Solvable Lie algebras with $N(R_n,m,r)$ nilradical

In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.

متن کامل

Einstein Solvmanifolds and the Pre-einstein Derivation

An Einstein nilradical is a nilpotent Lie algebra, which can be the nilradical of a metric Einstein solvable Lie algebra. The classification of Riemannian Einstein solvmanifolds (possibly, of all noncompact homogeneous Einstein spaces) can be reduced to determining, which nilpotent Lie algebras are Einstein nilradicals and to finding, for every Einstein nilradical, its Einstein metric solvable ...

متن کامل

Augmented superfield approach to unique nilpotent symmetries for complex scalar fields in QED

The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to ...

متن کامل

Augmented superfield approach to unique nilpotent symmetries for complex scalar fields in QED

The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015